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ABSTRACT

Subspace-based analysis has increasingly become the preferred
method for clustering high-dimensional data. A visually interactive
exploration of subspaces and clusters is a cyclic process. Every
meaningful discovery will motivate users to re-search subspaces
that can provide improved clustering results and reveal the
relationships among clusters that can hardly coexist in the original
subspaces. However, the combination of dimensions from the
original subspaces is not always effective in finding the expected
subspaces. In this study, we present an approach that enables
users to reconstruct new dimensions from the data projections
of subspaces to preserve interesting cluster information. The
reconstructed dimensions are included into an analytical workflow
with the original dimensions to help users construct target-oriented
subspaces which clearly display informative cluster structures. We
also provide a visualization tool that assists users in the exploration
of subspace clusters by utilizing dimension reconstruction. Several
case studies on synthetic and real-world data sets have been
performed to prove the effectiveness of our approach. Lastly,
further evaluation of the approach has been conducted via expert
reviews.

Keywords: High-Dimensional Data, Subspace Clustering, Visual
Clustering, User Interaction

1 INTRODUCTION

In high-dimensional data, meaningful patterns, such as clusters,
are more likely to occur only in locally relevant sub-dimensional
spaces. Therefore, subspace-based analysis has increasingly
become popular in exploration of high-dimensional data. In
the data mining community, a class of so-called subspace
clustering algorithms has been proposed to automatically find
clusters that exist in different dimensional subspaces[11][13].
Simultaneously, in the visualization community, several pioneering
works have introduced visual analysis methods to interpret
subspace clustering results[14][10], explore subspaces and
clusters interactively[16][20], or fulfill specialized requirements in
astronomy[4] and bioinformatics[2].

Subspaces, which are constructed from a high-dimensional data

∗e-mail: zff@csu.edu.cn
†e-mail: dreair@csu.edu.cn
‡e-mail: huangwei grace@csu.edu.cn
§e-mail: zhaoying@csu.edu.cn (corresponding author)
¶e-mail: xiaoru.yuan@pku.edu.cn
‖e-mail: xliang22@asu.edu

∗∗e-mail: shiyangcsu@126.com

set, may be completely different or partially overlapped. Various
cluster structures formed in subspaces provide different views on
the same data. The visually interactive exploration of subspaces and
clusters is a cyclic process. Discoveries in interesting subspaces
may lead to other exploration goals and motivate users to start
a new round of subspace analysis. One of the potential goals is
to construct new subspaces that combine diverse cluster structures
observed in different original subspaces. In these new subspaces,
users can observe and compare cluster structures directly, and thus,
gain additional insights into the data. However, a simple addition
of the dimensions from the original subspaces does not always
effectively help users quickly find the target subspaces.

For example, food data with nutrient measurements are plotted
in two user-selected subspaces: one subspace contains vitamin
dimensions (e.g. vitamin B6 and B12) and the other subspace
contains mineral dimensions (e.g. calcium and iron). A cluster,
named CluVit, is easily recognizable in the vitamin subspace, but
is obscure in the mineral subspace. To gain additional insights
into the interrelations between CluVit and the clusters uncovered
in the mineral subspace, users expect to construct a new subspace
where the cluster structure of the mineral subspace is preserved and
CluVit is also distinct. In this case, the mechanical merging of the
two original subspaces is likely to obscure all clusters because of
the multiplied number of dimensions. Finding a few dimensions
related to CluVit in the vitamin subspace may be a little complicated
and difficult process. Therefore, helping users efficiently construct
goal-driven subspaces becomes a challenging problem.

In this study, we present an approach that enables interactive
subspace construction driven by the iteratively refined targets of
users. Our approach is based on generating a manageable number
of reconstructed dimensions (RDs) to preserve interesting cluster
information in subspaces. We define a visual analytical pipeline to
introduce these new dimensions into the subspace analysis cycle.
In each new round of subspace analysis, the RDs can convey the
preserved cluster information to the original subspaces to improve
the clustering results of these subspaces. Moreover, the RDs can
possibly help users effectively construct subspaces that clearly
display merged cluster structures that do not coexist in the original
subspaces. To incorporate the knowledge of users and achieve their
targets, we introduce the 2D data projections of subspaces as the
human-machine interface to intuitively explore subspace clusters
and interactively reconstruct dimensions. A visualization tool is
specifically designed for our pipeline to help users analyse subspace
clusters, reconstruct dimensions, and track clusters in different
subspaces.

In summary, we present the following contributions of this
study: (1) A method for reconstructing dimensions that preserves
interesting cluster information in subspaces; (2) An analytical
pipeline and a visualization tool to support the coordinated works
of RDs and original dimensions in the interactive exploration of
subspace clusters.
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2 RELATED WORK

In this section, we first summarize interactive subspace analysis
in the visualization community. We then discuss a few existing
techniques on creating new dimensions for high-dimensional data
visualization.

2.1 Sub-dimensional Space Analysis and Visualization
In high-dimensional data, many traditional clustering techniques
suffer from the “curse of dimensionality”. Meaningful patterns,
such as clusters or outliers, sometimes are prominent only in
a few sub-dimensional spaces. In the data mining community,
subspace clustering[11][13] provides a new path to the analysis
of high-dimensional data. It localizes the search for relevant
dimensions and uncovers clusters that exist in multiple, possibly
overlapped subspaces. However, some new problems are brought
out at the same time. One of the typical problems is the difficulty
in handling enormous number of interesting subspace candidates,
and understanding varied and possibly redundant clustering
results. Interactive visualization is an effective solution for this
problem, which is already proved by several works to date.
Assent et al.[1][9] designed a visual component of WEKA for
interactive exploration of clusters found by subspace clustering
algorithms. ClustNails[15] is another visualization tool for
navigating and interpreting the result of subspace clustering.
Tato et al.[14] took advantage of topological and dimensional
subspace similarity to deal with redundancy of the full result of
SURFING. Nam et al.[10] provided a visualization framework
to analyze the clustering result of ENCLUS from overview to
detail. Nevertheless, the foregoing works simply focus on the
interpretations of automatically generated results of subspace
clustering algorithms. What differentiates our work is that we
raised an interactive process on constructing subspaces, and this
process is driven by the iteratively refined targets of users.

Compared with automatic subspace clustering in data mining,
interactive subspace analysis driven by visualization techniques
can better incorporate knowledge and questions of human users.
Recently, multiple works have paid attention to interactive
subspace exploration. Value and Relation Display (VaR)[18] is an
early related work that employs MDS and Jigsaw layout to help
users interactively construct subspaces based on the dimensional
similarity. Turkay et al.[16] strengthened the interactive power
of the dimension projection. They proposed a dual setting of
interactions in data projection and in dimension projection. With
this approach, users can jointly study the distribution of data items
in a user-selected sub-dimensional space as well as the structure
of the dimensions. Zhao et al.[21] also allowed users to brush a
subset of the data items which can represent both major and minor
trends of multi-dimensional data in parallel coordinate. Yuan et
al.[20] designed a projection matrix to analyze multiple subspaces
generated by a hierarchical manner of subspace exploration. The
matrix well integrates the data projection plots and the relevant
dimension projection plots into an interface for cross-comparison.
A common feature of these interactive explorations of subspaces
and clusters are stuck in the original dimension space. However,
our work aims to create a few new informative dimensions, and
enable users to construct subspaces from the new and original
dimensions.

2.2 Dimension Partition and Dimension Representative
Only a few works have considered creating new dimensions for
high-dimensional data visualization. We discuss them in two
parts: dimension partition and dimension representative. Most
of the existing research usually treats a dimension as a whole
to measure the correlation with clustering results. This may
ignore the highly partial correlation among some internal values
in one dimension. Sharko et al.[12] described an extension to

Radviz called Vectorized Radviz (VRV) which partitions each
dimension into more dimensions on categorical data. Zhou et
al.[22] discussed how to apply the idea of VRV to a continuous
dataset. Dimension partition provides a more flexible reordering
dimension space in Radviz to support the exploration of meaningful
clustering results. However, dimension partition often produces
more dimensions. This may make the already high-dimensional
space worse. Furthermore, the partial correlation may also exist
between dimensions[8].

Compared to dimension partition, creating representative
dimensions will be more steerable and practical. Each of
representative dimensions can represent a subset of original
dimensions. Yang et al.[19] suggested to create a representative
dimension for each selected dimension cluster. These
representative dimensions compose a low dimensional space
for gaining a reasonable visualization. However, they did not
explicitly point out how to generate representative dimensions.
Turkay et al.[17] introduced three different methods to construct
representative dimensions. They also provided quantitative
measures to refine representative dimensions. These new
dimensions can be together with the original dimension for an
informed dimension reduction at different levels. Gleicher[6]
stressed the importance of expert knowledge in generating
representative dimensions. His approach enables experts to
craft sets of dimension projection functions that align with user
specifications. Therefore, the derived new dimensions can well
represent concepts defined by the experts examples.

The concept of dimension reconstruction in our work is a bit
similar to dimension representative. However, two aspects can
distinguish our work from theirs. RDs are the representations
of cluster structures in subspaces interesting to users, whereas
representative dimensions are used to represent dimension groups.
The second is that RDs are interactively or automatically generated
from the data projections of subspaces, while representative
dimensions are derived from original dimensions.

3 DIMENSION RECONSTRUCTION
In this section, we introduce our core concept, dimension
reconstruction, and explain how to interactively reconstruct
dimensions. A conceptual illustration of our method is presented
in Fig.1, which is composed by three parts. The first part is a direct
data analysis by data projection. Data projection techniques (e.g.
PCA and MDS) allow a data set with high-dimensional points to
be explored by projection in a 2D plane, as shown in Fig.1(a). The
most important advantage of this 2D data projection technique is
that human users can directly observe and operate data samples
from a 2D screen space. This process can be described by Equation
1, where n denotes the number of original dimensions. As n
increases, the result of direct data projection become meaningless.

{ℜn}→ {ℜ2} (1)

Interactive subspace analysis initially groups the original
dimensions into multiple sub-dimensional spaces, and then
performs data projection on each subspace to help users observe
subspace clusters. This process is described by Equation 2, where
i denotes the number of subspaces and ni denotes the number
of dimensions in the ith subspace. For example, we have a
high-dimensional data set with three categories of data samples,
marked by the colors red, green, and blue. Three subspaces of
the data set are shown in Fig.1(b). In subspace1, green samples
are separable. In subspace2 , blue samples are well clustered. In
subspace3, green and blue samples are separable, whereas red
samples interlace exactly with the boundaries of blue and green
samples. Thus, the users next goal of analysis might be to construct
a new subspace in which the three categories of samples are well
clustered.
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Figure 1: Conceptual illustration of dimension reconstruction for visually interactive subspace analysis.

{ℜn}→

⎛
⎜⎜⎝

ℜn1

ℜn2

...
ℜni

⎞
⎟⎟⎠→

⎛
⎜⎜⎜⎝

ℜ2

ℜ2

...

ℜ2

⎞
⎟⎟⎟⎠ (2)

Our work aims to generate several new dimensions from the
2D data projection of a subspace to preserve interesting cluster
information in the subspace. These new dimensions can be used
to improve the clustering results of other subspaces. As shown
in Fig.1(b), a straight line is interactively constructed as a new
dimension (RD1) in the 2D data projection of subspace1, and data
points are projected from the data projection onto RD1. Green
samples densely concentrate in one region of RD1, and this region
is clearly separated from other samples. Therefore, RD1 exhibits
good capability of preserving the cluster information of green
samples in subspace1. Similarly, RD2 is constructed to preserve
the cluster information of blue samples in subspace2. Furthermore,
users can construct several such new dimensions in one subspace to
maintain the complex cluster structure of this subspace. To sum up,
constructing a new dimension goes through two steps. The first step
is constructing a subspace from the full original dimensional space,
and the second step is constructing this new dimension in the 2D
data projection of that subspace. Thus, we name this new dimension
“Reconstructed Dimension”, which gives a sense of interactivity
and describes a two-step process. In addition, we can also consider
this new dimension as “Derived Dimension”.

These RDs, which demonstrate the preservation of interesting
information, can be added into existing subspaces. We expect
that the old cluster structures will be unbroken and by contrast,
the clustering results will be improved. As shown in Fig.1(c).
As a result of merging RD1 and RD2 into subspace3, the strong
clustering information held by these two RDs leads to a clear
representation of clusters in the data projection of subspace3.
In fact, subspace3 has become a new subspace with n3 + 2
dimensions, which demonstrates the significance of these RDs
in driving a new round of subspace exploration and helping
users effectively construct new subspaces that can carry more
meaningful cluster structures. At this point, subspace analysis
that uses dimension reconstruction develops to a cyclic and user
target-oriented process that can be described by Equation 3, where
m denotes the summation of the original dimensions n and the

new dimensions r, i denotes the number of subspaces, mi denotes
the number of dimensions in the ith subspace, and r j denotes the
number of new dimensions constructed in the jth subspace.

{ℜm}→

⎛
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ℜm1

ℜm2

...
ℜmi

⎞
⎟⎟⎠→

⎛
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ℜ2

ℜ2

...

ℜ2

⎞
⎟⎟⎟⎠→

⎛
⎜⎜⎝

ℜr1

ℜr2

...
ℜr j

⎞
⎟⎟⎠ (3)

When the cluster structure in a subspace is sufficiently simple,
users can directly reconstruct dimensions through interactive
operations on 2D data projection. However, when users encounter
a complicated cluster structure in a subspace, (e.g., a single straight
line is unable to separate multiple clusters), we need to adopt
some inset algorithms to automatically reconstruct the candidates
of new dimensions, which are offered to users as options. If
users interactively tag each interesting cluster in the 2D data
projection of a subspace, we can regard the high-dimensional data
as the labeled data set. Thus, the question that follows is how to
utilize label information in finding optimal projections that make
high-fidelity preservation of interesting information.

Inspired by the idea of Choo et al.[3], which used classical linear
discriminant analysis (LDA) for better retaining classification
in low-dimensional space, we currently have introduced classic
LDA into our analytical pipeline to help users automatically
find optimally linear projections on the 2D data projection of a
subspace. For two-class problems, such as the samples in Fig.2,
LDA leads to an optimal projection line on which the distance
between two classes is maximized, whereas the variance of each
class is minimized. As shown in Fig.2, if the samples are projected
onto RD2, then the samples in the two classes will be mixed near
the boundary. If they are projected onto RD1 as determined by
LDA, then the two classes will clearly be separable.

In addition, we need to standardize values on RDs. For
high-dimensional data, the value spans in different dimensions
significantly differ. Z-score standardization is a popular method for
comparing a sample to a standard normal deviation. In our method,
Z-score standardization is used on both original dimensions and
derived RDs to convert diverse value spans into small normalized
ranges without destroying their original data distributions.
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Figure 2: Conceptual illustration of LDA. (a) The two classes are
separated well when projected onto RD1. (b) M’ on RD1 is the
projected point of M.

4 VISUALIZATION AND INTERACTION
4.1 Analytical Workflow
We propose an analytical workflow to support the coordinated
works of RDs and original dimensions for the visually interactive
exploration of subspace clusters. A number of visualization and
interaction techniques are incorporated into the workflow. Shown
as Fig.3, the first step is to interactively construct subspaces. To
assist users in selecting dimensions to construct subspaces, we
provide visual representations of dimension information from
overview to detail. In the overview aspect, a dimension projection
technique is employed to display the overall relationships among
dimensions in a 2D scatterplot. In the detail aspect, a dimensional
histogram shows data distribution on each dimension. The second
step is to explore meaningful data patterns in the subspaces which
are constructed in the previous step. We provide users with multiple
data views. Each data view is the 2D data projection of a subspace.
In a data view, users can observe cluster structures and adjust the
weights of dimensions, and thus, obtain different projection results.
Users can also merge subspaces and track user-tagged clusters in
different data views. The third step is to reconstruct dimensions.
We provide two methods to reconstruct dimensions: manual
operation and automated generation. Reconstructing dimensions
is allowed in any subspace. RDs are coupled with the original
dimensions to start a new round of subspace analysis.

Figure 3: Proposed analytical workflow.

4.2 User Interface
A user interface is particularly designed to help users implement
our proposed workflow. The interface overview is presented in
Fig.4, which includes a data exploration area and a dimension
exploration area. A synthetic data set is used in Fig.4. This
data set includes 12 dimensions and 750 samples without marking
classifications, and has been used in[14][5] for their case studies.

4.2.1 Hierarchical Dimension Projection
The dimension projection plot (Fig.4(a)) is the operating area for
interactive subspace construction. The dots and stars in the plot
represent original dimensions and RDs respectively. The positions
of dots and stars are generated via classical MDS according to
pairwise relationships between individual dimensions. In classical

MDS, the dissimilarity transformation is D = 1 – P, whereas D
is dissimilarity distance matrix, P is similarity distance matrix
computed by Pearsons correlation coefficient. Thus, closely related
dimensions are adjacent to one another in the dimension projection.
Users are allowed to interactively choose the dimensions in this plot
to construct a subspace. After a subspace is established, dimension
projection is updated to display dimensions that only exist in
the former subspace. Hence, a hierarchical high-dimensional
exploration is provided to allow users to drill down the relationships
of dimensions and build subspaces in global or local dimensional
space. A thumbnail of full-dimension projection is located on the
top right of the dimension projection plot. It serves as a navigator
to prevent the loss of analysis goals in local explorations. The
highlighted points in the navigator are the dimensions used in the
current dimension projection. For example, Fig.5(a) shows a MDS
projection of 221 dimensions, and 38 dimensions are selected to
construct a subspace. Simultaneously, the dimension projection is
updated to Fig.5(b), in which 9 dimensions of the 38 dimensions
are highlighted.

Figure 5: Illustration of hierarchical dimension projection.

4.2.2 Stacked Dimensional Histogram
We present stacked dimensional histogram to provide the
distribution information of original data on a dimension to assist
users in constructing subspaces. A dimensional histogram plot is a
probability distribution histogram that is similar to the gray-scale
histogram in digital image processing. For a data set labelled
into c classes, the probability distribution of each class would be
stacked in a general histogram with c colors. When users select an
original dimension or a RD from the dimension projection plot, a
histogram of that dimension will be added into the histogram list.
If users select a data plot, then the histograms of all dimensions in
that subspace will be displayed. For example, Fig.4(b) shows all
dimensional histograms of 12 dimensions in the synthetic data set,
including 6 dimensions with two Gaussian clusters, 3 dimensions
containing four multi-modal Gaussian distributions with different
means and variances, and 3 dimensions with uniformly distributed
random noises.

Figure 6: Menu of data plot.
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Figure 4: Overview of user interface with (a) dimension projection plot, (b) dimensional histogram list, (c) multi-viewed data exploration area, and
(d) stacked dimensional histograms of two new dimensions reconstructed from cluster-tagged subspace5.

4.2.3 Multi-Viewed Data Exploration

Data Plot. A data exploration area that involves multiple plots
is shown in Fig.4(c). The data plots are arranged according to
their creation time. A data plot has three major components: a
toolbar, a navigator and a scatterplot. The toolbar contains a pop-
up menu and several information tips. The pop-up menu provides
four operation areas, namely, automated dimension reconstruction,
manual dimension reconstruction, k-means clustering setting, and
subspace dimension weight setting. The information tips on the
toolbar include the number of data points, the number of subspace
dimensions, the glyphs of the ground truth of classifications, and
the glyphs of created RDs in this subspace. In Fig.6, the subspace
has 3 dimensions and 750 data samples, the ground truth of data
classification has only one class, and users have reconstructed two
dimensions by automated method and one dimension by manual
manipulation. The navigator is a thumbnail of the projection from
all dimensions. The scatterplot is the MDS of the data samples,
and the distance function of MDS is Euclidean distance. The shape
of the data points in the scatterplot corresponds to the glyphs of
ground truth.

Clustering and Cluster Tracking. Data projection in a data
plot can be regarded as a visual clustering result. Users can
interactively code their interested clusters by colors. The colors
will be maintained in the data plots that will be created later for
tracking the distribution of the tagged points. We also offer a
k-means clustering method. Users can first cluster non-labelled
data by k-means algorithm, then tag the original data by clustering
result, and finally apply LDA to the data. As shown in Fig.4,
subspace1 includes all 12 dimensions in the synthetic data set.
Subspaces 2, 3, and 4 are constructed based on their proximities
in the dimension projection plot. Subspace2 includes 6 dimensions

with 2 Gaussian clusters. Subspace3 includes 3 dimensions with
random noises. Subspace4 includes 2 dimensions with 4 Gaussian
clusters. Subspace5 is composed by Dim2, Dim6, and Dim12, and
forms four clear clusters in data plot 5. We mark these four clusters
and track them in the following data plots.

Reconstructing Dimensions. Users can manually reconstruct
dimensions in each data plot through directly drawing lines.
Automatic dimension reconstruction is allowed after tagging
clusters in a data plot. RDs can be algorithmically built according
to the classes coded by users, and are shown as lines on the data
plot. The operations of rotation and translation are provided to
adjust the parameters of a line. When dimension reconstruction is
completed, the dimension projection plot is updated to include the
new dimensions. Hence, RDs can be included in the construction
of new subspaces. Furthermore, users can adjust the weights
of reconstructed dimensions to increase their influences on the
clustering effects of new subspaces.

For example, we reconstruct two new dimensions, namely, RD-
A and RD-B, by LDA in the well-clustered subspace5. Shown as
Fig.4(d), the blue cluster information can be maintained on RD-
B, whereas the other three clusters can be preserved on RD-A.
Subspace6 is built by adding RD-A into subspace2. Data plot 6
shows that the cluster on the left of subspace2 can be classified
into three small clusters. Subspace7 is formed by adding RD-A
into subspace3. No improvement occurs in subspace7, because the
3 dimensions in subspace3 are random noises. If we double the
weight of RD-A in subspace7, then some patterns can be found
on the noises in data plot 8. When we add RD-A and RD-B into
subspace3 and then double their weights, the influences from the
three noises dimensions are extremely small, and four clusters are
clearly observed in subspace9.
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Figure 7: Experiments on the food data set: (a) projection of all dimensions; (b) four subspaces constructed during the first round of analysis;
(c) the dimensional histograms of two RDs: namely RD-A from subspace1 and RD-B from subspace2; (d) improved data projections by adding
the RDs into subpace3; (e) improved data projections by adding the original dimensions into subspace1 into subspace3. (f) the result of data
projection by combining subspace4 with the two RDs.

5 CASE STUDY

5.1 USDA Food Composition Data

In this case study, we analyze the USDA Food Composition
Data, which is a complete collection of raw and processed foods
characterized by their composition in terms of nutrients, for
demonstrating how our approach improves the clustering results of
subspaces. This data set contains 722 samples and 18 dimensions.
It was used in [14][20] for their case studies.

In [20], food data samples were divided into three categories.
We employ their classification result and interactively construct 4
interesting subspaces mentioned by [20]. The dimension projection
of all features are shown in Fig.7(a). Subspace1 consists of six
mineral features: Calcium, Carbohydrate, Fiber, Iron, Magnesium,
and Manganese. Subspace2 mainly contains measures of vitamin
content, including Vit B12, Vit B6, Vit D, and Protein. Subspace3
contains all the remaining dimensions. Subspace4 includes three
dimensions in subspace3, namely, Beta Carot, Vit A and, Vit C.

Four data plots in Fig.7(b) present the data projections of the
four subspaces. In data plot 1, the three categories of samples
are grouped individually and nearly linearly separable but have
slightly obscure boundaries. We reconstruct a new dimension, RD-
A, to keep the clustering information in subspace1. In data plot
2, although the red samples are not densely clustered, a clear gap
exists between the red samples and the other two categories. Thus,
we reconstruct RD-B to keep the cluster structure in subspace2.
In data plots 3 and 4, the visual clustering results are worse.
Fig.7(c) shows the probability distributions of samples and clusters
on RD-A and RD-B. In the next round of analysis, we use the
preserved cluster information on RD-A and RD-B to improve the
data projections of subspaces 3 and 4.

We construct subspace5 by combining all the dimensions of
subspace3 with RD-A. By comparing data plot 5 with data plot 3,
we observe that a portion of the red samples is separated from the
overlapping region. We then add RD-A and RD-B into subspace3,
and the three categories are clustered well in Fig.7(d). Similarly,

we add RD-A and RD-B into subspace4, and the visual clustering
result in subspace4 is obviously improved, as shown in Fig.7(f).

If we directly add the dimensions of subspace1 into subspace3,
would the visual clustering effect be improved? We have conducted
two experiments. Firstly, the dimensions of subspace1 are added
one by one into subspace3. Data plot 7 shows the best clustering
effect in this experiment. Based on the comparison of data plots
5 and 7, adding an original dimension of subspace1 yields a
less effective result compared with using RD-A. In the second
experiment, all six dimensions in subspace1 are added into
subspace3, shown in Data plot 8. Simultaneously adding numerous
dimensions results in obvious changes in cluster structure, and the
clustering result of the red samples is not that good as shown in
data plot 5.

The results of these experiments prove that dimension
reconstruction is useful in providing users with an improved
perception of subspace clusters. RDs can preserve the cluster
information formed by all the dimensions in subspaces, and
then are used to improve the clustering results of other original
subspaces. This process can also be regarded as a user-target,
cluster-oriented process that simplifies dimensions.

5.2 CADASTER Molecule Data

We will now demonstrate how our approach helps users construct
subspaces with more meaningful cluster structures by using
dimension reconstruction. The Molecule Data is a real-world
data set provided by CADASTER Challenge[7]. This data set
describes the structural information of molecules. Each sample is a
molecule, and each dimension is a SimulationsPlus descriptor (e.g.
elements, formal charges and bonds). There are 664 samples and
222 molecular descriptors in this data set. One of the descriptors
is the measurement of environmental toxicity log(IGC50− 1) of
a molecule. According to the value of the environmental toxicity,
all 664 samples are divided into two classes (362 molecules
with positive environmental toxicity and 302 molecules with
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Figure 8: Experiments on the molecule data set: (a) the dimension projection of the molecule data set; (b) four subspaces constructed during
the first round of analysis; (c) updated dimension projection after reconstructing two dimensions from subspace2 and subspace 3; (d) 6 clusters
formed in subspace5 which is constructed by the two RDs; (e) tagging 6 clusters in subspace5 by colors and tracking them to gain the relationship
between two cluster structures formed in subspace2 and subspace3.

non-positive environmental toxicity). In this case, we will explore
all the molecules with positive environmental toxicity.

The projection of 221 dimensions (excluding the environmental
toxicity) is shown as Fig.8(a). Four subspaces are constructed in
Fig.8(b). First, we select all 221 dimensions to construct subspace1.
Data plot 1 shows that most of the data concentrates densely, which
offers little cluster information. Then we notice that there are
two groups of contiguous dimensions on the dimension projection
with one group in the lower left corner and the other in the upper
right corner. Thus, two subspaces are constructed by selecting
the two groups of dimensions: subspace2 with 23 dimensions and
subspace3 with 38 dimensions. Data plots 2 and 3 depict that both
subspaces 2 and 3 form three strip clusters. We now have a further
analysis target, what are the relationships between these two cluster
structures in these two different subspaces. We then try to find
the answer by merging subspaces 2 and 3. Unfortunately, the two
original cluster structures are missed in data plot 4.

We next analyze the relationships between the two cluster
structures by using dimension reconstruction. Two dimensions,
RD-A and RD-B, are reconstructed from subspaces 2 and 3
respectively. Then, the dimension projection plot is updated to
show the two RDs in Fig.8(c). We directly select these two RDs
to construct subspace5. Fig.8(d) shows that six clusters with clear
boundaries formed in subspace5. We then use different colors to
label the six clusters from C1 to C6 individually and observe their
distributions in subspaces 2 and 3. As shown in Fig.8(e), the three
clusters in subspace2 are grouped as C1, C2, C3, C4, C5, and C6,
and three clusters in subspace3 are grouped as C3, C5, C2, C4, C6,
and C1. To sum up, we obtain some interesting conclusions: (1)
the cluster structures in subspaces 2 and 3 are completely different,
while the samples of three clusters of each subspace are interlaced;
(2) these 362 molecules can be divided into six categories.

This case explains that dimension reconstruction is useful
in exploring the cluster structures formed in different existing
subspaces. Dimension reconstruction can provide an intuitive way
to help users quickly merge cluster structures that do not coexist in
the original subspaces.

6 EXPERT REVIEW AND DISCUSSION

To further evaluate our method and the user interface design, we
interviewed two experts from University C. The research interest
of Expert A is recommendation systems in data mining. Expert
B excels in protein structure prediction in bioinformatics. Both of
them are considered as the intended users of the approach. During
the interview, we first explained the basic concept of our method
and demonstrated our interface using the two case studies. After
they tried out the tool, we discussed its advantages and limitations.
In this section, based on the feedback of Experts A and B, we
summarize the advantages and disadvantages of our approach and
provide potential methods to improve it.

Both experts recognized that dimension reconstruction is
a novel and interesting approach to explore subspace clusters
in high dimensional data. Expert A commended, “Dimension
reconstruction, as an alternative to dimension reduction, can
be useful in real task applications.” Expert B added, “Another
advantage of this work is the pipeline incorporates interactivity
and user feedback into dimension reconstruction and subspace
construction.” Both experts also encouraged us, “Dimension
reconstruction may be helpful for the explorative analysis of
several data patterns, not only clusters and cluster structures.”

The discussion of limitations mainly focused on the issues
of usability and scalability. The first usability suggestion is to
incorporate more guidance information in the explorative analysis
of subspaces and clusters. Though a number of visualizations and
interactions are applied in our tool to support each analytical step,
this is a little complicated and tedious in a way. Additionally, some
strongly correlated dimensions are used for selecting subspace
in the two cases. This is not always a rational way because
a meaningful subspace may be composed of very unrelated
dimensions. In fact, the idea of dimension reconstruction is more
suitable in the situation that users have already got some interesting
subspaces, such as the beginning subspaces in our cases. And
what’s more, our intended users would need to have a good general
understanding of the concepts of clustering and projection.
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Another usability problem is that the current tool depends
on linear methods. Expert B pointed out, “The classic MDS
limits dimension and data projections to a reflection of linear
relationships.” Expert A pointed out that “typical LDA assumes
that clusters follow Gaussian or convex distribution.” With regard
to this limitation, we aim to solve it from two perspectives. On the
one hand, diverse nonlinear techniques can be considered, such as
spectral clustering and kernel-based clustering. On the other hand,
we plan to make the interactive dimension reconstruction more
flexible, such as using stepwise lines or curves.

Furthermore, the issue of possible data distortion should be
noticed. In 2D space, visual entities effectively support the use of
high cognitive abilities of human users. However, there is a risk that
data are distorted in the space conversion from n-D to 2D. Expert
A commented, “Its important to make users more aware of possible
data distortion caused by 2D projections, because this may affect
the conclusions drawn from the data.” In addition, RDs do not
have specific physical meanings in the real world like what original
dimensions have. We should help users explore the links between
RDs and original dimensions. One possible method to achieve this
is to use parallel coordinate plots.

Both experts agreed that this approach is able to deal with truly
high dimensional data sets, but they also raised some concerns of
scalability when the input consists of huge amounts of data items
or dimensions. Firstly, the dimension and data projection is a
time-consuming task. This issue can be improved by GPU-based
parallel computing or a density map with an appropriate resolution.
Secondly, the current tool cannot efficiently present high numbers
of data items, dimensions or subspaces at a time. We plan to provide
users with hierarchical navigators or heat-map-like depictions.

7 CONCLUSION

This paper presents an approach called Dimension Reconstruction
for visually exploring subspace clusters in high-dimensional data.
Our motivation is to help users improve visual clustering results
of subspaces by taking advantage of various cluster structures in
subspaces. To reach this goal, new dimensions are interactively
or algorithmically reconstructed from the 2D data projections
of subspaces for cluster information preservation. After adding
the appropriate RDs into other original subspaces, the preserved
cluster information will be well exposed, which will improve
the clustering results of these subspaces. More importantly,
dimension reconstruction plays a significant role in the interactive
subspace analysis cycle. As the adoption of RDs, it will be easy for
users to construct new subspaces that have informatively merged
cluster structures. An analytical workflow and a visualization
tool are provided in this approach to support the co-work of RDs
and original dimensions. In the case study, we demonstrated
the effectiveness of our approach through the analysis of two
real-world data sets. We also discussed the limitations of our
approach and proposed some potential methods to improve it.

ACKNOWLEDGEMENTS

This work is supported by the National Natural Science Foundation
of China under Grant Nos. 61103108, 61170204 and 61402540.
(video demo for this paper: https://youtu.be/dYaInHzviLs)

REFERENCES

[1] I. Assent, R. Krieger, E. Müller, and T. Seidl. Visa: visual subspace

clustering analysis. ACM SIGKDD Explorations Newsletter, 9(2):5–

12, August 2007.

[2] S. Barlowe, J. Yang, D. J. Jacobs, D. R. Livesay, J. Alsakran,

Y. Zhao, D. Verma, and J. Mottonen. A visual analytics approach to

exploring protein flexibility subspaces. In Proceeding of IEEE Pacific
Visualization Symposium (PacificVis), pages 193–200, 2013.

[3] J. Choo, H. Lee, J. Kihm, and H. Park. ivisclassifier: An interactive

visual analytics system for classification based on supervised

dimension reduction. In Proceedings of IEEE Symposium on Visual
Analytics Science and Technology (VAST), pages 27–34, 2010.

[4] B. J. Ferdosi, H. Buddelmeijer, S. Trager, M. H. F. Wilkinson, and

J. B. T. M. Roerdink. Finding and visualizing relevant subspaces

for clustering high-dimensional astronomical data using connected

morphological operators. In Proceedings of IEEE Symposium on
Visual Analytics Science and Technology (VAST), pages 35–42, 2010.

[5] B. J. Ferdosi and J. B. T. M. Roerdink. Visualizing high-dimensional

structures by dimension ordering and filtering using subspace analysis.

Computer Graphics Forum, 30(3):1121–1130, 2011.

[6] M. Gleicher. Explainers: Expert explorations with crafted

projections. IEEE Transactions on Visualization and Computer
Graphics, 19(12):2042–2051, 2013.

[7] http://www.cadaster.eu/node/65. Cadaster challenge dataset.
[8] T. May, A. Bannach, J. Davey, T. Ruppert, and J. Kohlhammer.

Guiding feature subset selection with an interactive visualization. In

Proceedings of IEEE Symposium on Visual Analytics Science and
Technology (VAST), pages 111–120, 2011.

[9] E. Müller, I. Assent, R. Krieger, T. Jansen, and T. Seidl. Morpheus:

interactive exploration of subspace clustering. In Proceedings of the
14th ACM SIGKDD, pages 1089–1092, August 2008.

[10] J. E. Nam and K. Mueller. Tripadvisorn-d: A tourism-inspired

high-dimensional space exploration framework with overview and

detail. IEEE Transactions on Visualization and Computer Graphics,

19(2):291–305, February 2013.

[11] L. Parsons, E. Haque, and H. Liu. Subspace clustering for high

dimensional data: a review. ACM SIGKDD Explorations Newsletter,

6(1):90–105, August 2004.

[12] J. Sharko, G. Grinstein, and K. A. Marx. Vectorized radviz and

its application to multiple cluster datasets. IEEE Transactions on
Visualization and Computer Graphics, 14(6):1444–1427, 2008.

[13] K. Sim, V. Gopalkrishnan, A. Zimek, and G. Cong. A survey on

enhanced subspace clustering. Data mining and knowledge discovery,

26(3):332–397, 2013.

[14] A. Tatu, F. Maas, I. Farber, E. Bertini, T. Schreck, T. Seidl, and

D. Keim. Subspace search and visualization to make sense of

alternative clusterings in high-dimensional data. In Proceedings of
IEEE Symposium on Visual Analytics Science and Technology (VAST),
pages 63–72, 2012.

[15] A. Tatu, L. Zhang, E. Bertini, T. Schreck, D. K. S. Bremm, and

T. Landesberger. Clustnails: Visual analysis of subspace clusters.

Tsinghua Science and Technology, 17(4):419–428, 2012.

[16] C. Turkay, P. Filzmoser, and H. Hauser. Brushing dimensionsca

dual visual analysis model for high-dimensional data. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2591–

2599, December 2011.

[17] C. Turkay, A. Lundervold, A. J. Lundervold, and H. Hauser.

Representative factor generation for the interactive visual analysis

of high-dimensional data. IEEE Transactions on Visualization and
Computer Graphics, 18(12):2621–2630, 2012.

[18] J. Yang, D. Hubball, M. Ward, E. Rundensteiner, and W. Ribarsky.

Value and relation display: Interactive visual exploration of large data

sets with hundreds of dimensions. IEEE Transactions on Visualization
and Computer Graphics, 13(3):494–507, 2007.

[19] J. Yang, M. O. Ward, E. A. Rundensteiner, and S. Huang. Visual

hierarchical dimension reduction for exploration of high dimensional

datasets. In Proceedings of the symposium on Data visualisation
2003(VisSym’03), pages 19–28, 2003.

[20] X. Yuan, D. Ren, Z. Wang, and C. Guo. Dimension projection

matrix/tree: Interactive subspace visual exploration and analysis of

high dimensional data. IEEE Transactions on Visualization and
Computer Graphics, 19(12):2625–2633, December 2013.

[21] G. Zhao, W. James, and L. R. S. Markov chain driven multi-

dimensional pattern analysis with parallel coordinates. In Proceedings
of Vision, Modeling, and Visualization (VMV), pages 191–198, 2012.

[22] F. Zhou, W. Huang, J. Li, Y. Huang, Y. Shi, and Y. Zhao. Extending

dimensions in radviz based on mean shift. In Proceeding of IEEE
Pacific Visualization Symposium (PacificVis), pages 111–115, 2015.

135



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


