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Network anomalies can arise from inter-
nal or external factors, such as network 
device failures, worms, and distributed 

denial of service (DDoS) attacks. Most of these 
causes will lead to traffic patterns that differ from 
benign traffic. Entropy-based traffic anomaly de-

tection has received consider-
able attention because entropy 
can provide more fine-grained 
metrics about traffic distribution 
patterns than traditional traffic 
volume analysis.1 Several flow-
header attributes (such as source 
and destination addresses and 
ports) and flow-behavior features 
(such as in and out degrees) have 
been suggested as candidates for 
entropy-based traffic anomaly 
detection.1,2 The power of using 
multiple entropy-based metrics 
in conjunction with each other 
may improve the rapid detection 
of various attacks.

Time-series analysis is the main method for 
entropy-based traffic anomaly detection. The 
method can help identify not only single traffic 
distributions but also the distributional changes 
over time. The timeline group is the most common 

representation of multiple entropy-based time se-
ries, and it can be analyzed by intelligent or man-
ual methods to detect potential traffic anomalies.

However, the application of entropy-based 
methods to detect traffic anomalies is hindered 
by several problems. First, entropy theory is not 
intuitive enough for users to understand because 
such a theory is an abstract mathematic metric 
of random variables. Second, entropy-based traffic 
metrics cannot provide detailed traffic distribu-
tion information. Third, when the timeline group 
includes many long time series, the visual clutter 
will prevent users from recognizing the underlying 
abnormal points. 

Consider this scenario: a security analyst re-
ceives an alert through the automatic or manual 
analysis of entropy-based traffic features. If the 
alert is about a potential malicious scan for vulner-
able ports, the security analyst will want to know 
which hosts and ports have been scanned, who the 
attackers are, and if the timeline contains similar 
scans. A comprehensive analysis of this informa-
tion will help the analyst make informed decisions, 
including whether the scan is a true attack or a 
false alert, the severity of the network attack, and 
what actions must be taken to safeguard the net-
work from further attacks. The traditional entropy-
based anomaly detection method is weak in that 

Entropy-based traffic metrics 
have received much attention 
in network traffic anomaly 
detection, but practical 
issues still hinder widespread 
adoption. The visual analytic 
tool ENTVis provides coherent 
visual analysis that makes 
entropy-based traffic features 
more intuitive and helps users 
interpret network data and 
more quickly identify traffic 
anomalies.
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it does not provide intuitive information and thus 
does not effectively support the analysis process.

The ENTVis visual tool visualizes the entropy 
measures of network traffic from multiple per-
spectives to help users achieve entropy-based 
anomaly detection. This tool provides three co-
ordinated views and rich interactions to support 
a coherent visual analysis from multiple perspec-
tives: the timeline group view for overall and drill-
down situation analyses, the Radviz view for clus-
tering similar anomalies during a given period, 
and the matrix view for understanding traffic 
distributions and diagnosing anomalies in detail. 
We performed several case studies and an expert 
review to verify the usability and effectiveness of 
our method. 

Calculating Entropy-Based Traffic Metrics
Entropy is a measure of the uncertainty of a ran-
dom variable in information theory. Let X be a 
discrete random variable with r states, xi i = 1 … 
r, and probability function pi = P{X = xi}, x ∈ X, 
Spi = 1, 0 ≤ pi ≤ 1. The classic Shannon entropy 
H(X) of the discrete random variable X is defined 
as follows:

H X p pi
n

i i( )= =∑ 1 log .

Entropy can be easily adopted to analyze net-
work traffic distributions because many traffic at-
tributes (such as source IP, destination IP, source 
port, destination port, protocol type, and flow 
size) can be considered discrete random variables. 

Entropy is an important concept in information and 
communication theory. This concept measures the 

uncertainty or impurity of a collection of data items. In the 
cybersecurity field, Wenke Lee and Dong Xiang proposed 
using several information-theoretic measures, such as 
entropy and conditional entropy, to describe the regular-
ity features of audit data for novel anomaly detection.1 
Since then, entropy-based traffic analysis has received 
considerable attention. For example, the port and address 
distributions have been commonly suggested as favorable 
candidates for entropy-based anomaly detection2 because 
they lead to a highly sensitive detection of a range of 
anomalies and to the automatic classification of anomalies 
via unsupervised learning. Furthermore, George Nychis 
and his colleagues found that behavioral and flow-size dis-
tributions can provide distinct anomaly detection abilities 
to complement the port and address distributions.3 

In the visualization community, entropy is a powerful 
measure for quantizing the chaos of a system or the 
saliency among multiple variables. Therefore, entropy is 
frequently used to guide efficient data exploration and 
improve visual mapping design. For example, Chaoli 
Wang and Han-Wei Shen discussed how information 
theory principles can be applied to scientific visualization.4 
Jamal Alsakran and his colleagues used entropy and joint 
entropy in reordering dimensions within the parallel set 
visualization to reduce visual clutter.5 

Visualization for cybersecurity is a novel interdisciplin-
ary field that offers humans visual tools to help solve 
cybersecurity problems.6 In this area, entropy is generally 
used for data preparation or is directly visualized into the 
interface for high-level situational awareness. For example, 
in TVi, a visual tool for traffic traces,7 the port and address 
distributions are taken as inputs to its core PCA (principal 
component analysis) based anomaly detector. In IDSRadar, 
which is a visual tool for intrusion detection system alerts,8 

five entropy timelines are mapped to the five tracks around 
a radial graph to distinguish false alarms from real risks. 
An online situational analysis tool, OCEANS,9 integrates 
four entropy timelines that correspond to source/destina-
tion IPs/ports into the main visualization view to help users 
comprehend situations and detect high-risk periods.
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Our approach uses the IP entropy and port en-
tropy. The IP entropy reflects the randomness of 
the hosts involved in network activities. For ex-
ample, if an attacker scans for vulnerable hosts, 
the source IPs of the scanning hosts will be seen in 
many traffic flows, and because they are relatively 
few, the source IP fields will contain less entropy 
than normal traffic. On the other hand, the desti-
nation IPs seen in traffic flows will be much more 
random than in normal traffic, while the destina-
tion IP fields will contain more entropy. 

A similar phenomenon happens on the port 
level. The port entropy depicts the randomness of 
the ports involved in network activities. A larger 
port entropy corresponds to a higher number of 
ports that are visited with similar probability. By 
contrast, a smaller port entropy means fewer ports 
are visited. For example, if malware calls for a scan 
in all ports of some hosts with similar probability, 
the destination port entropy will become large. If a 
DDoS attack is aimed at a special destination port 
to paralyze the service on the host, the probability 
of the attacked port will increase rapidly, and the 
destination port entropy will suddenly decrease.

The IP entropy and port entropy calculations are 
similar. In the following example, we demonstrate 
how to calculate the destination port entropy. Let 
the destination port in a traffic log be a discrete 
random variable A. If 100 different ports (ai i = 
1–100) are visited within a specific time span, and 
the visited amount is ni i = 1–100, the probability 
pi i = 1–100 of each port is calculated as follows:

p
n

n
ii

i

i
= =( )
∑ 1

100
1 100… .

The destination port entropy at this time is com-
puted as follows:

H A p pi i i( )= =∑ 1
100 log .

The next step is to standardize the value of H(A) 
so we can compare different entropy-based traffic 
metrics. We scale the value of H(A) to the interval 
[0, 1] with relative uncertainty (RU):

RU A
H A

H A
H A

( )= ( )
=

( )
max( ) log( )100

,

where Hmax(A) denotes the maximum entropy of 
the destination port. For the previous example, 
100 active destination ports are observed within a 
specific time span. Thus, the maximum entropy in 
this time span can be calculated by log(100). That 
means that 100 destination ports are visited with 
the same times. 

Visualization
Figure 1 provides an overview of our interface, 
which consists of three coordinated views: the 
timeline, Radviz, and matrix. 

Timeline View
The timeline view integrates a group of timelines 
at the top of the interface. Each timeline shows the 
temporal developing trend of a traffic feature. The 
group of timelines consists of two different types. 
The first type shows four entropy timelines that 
are widely used in network traffic anomaly detec-
tion, including the source IP entropy (EntroSIP), 
source port entropy (EntroSPort), destination IP 

(a)

(b) (c) (d)

Figure 1. Interface overview. (a) Timeline view, (b) Radviz view, (c) matrix view, and (d) control panel.
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entropy (EntroDIP), and destination port entropy 
(EntroDPort). The second type is about network 
traffic states, including the number of network 
connections (NCon) and traffic volume (NVol) 
across the whole monitored network. The NCon 
and NVol not only show the overall state of net-
work activities, but they also supplement entropy-
based traffic distributions.

The timeline view offers two time span choices—
namely, 5 minutes and 60 minutes. Five minutes is 
suitable for short-term analysis in hours, whereas 
60 minutes is suitable for medium- and long-term 
analysis in days. These two choices support tem-
poral drilldown analyses. Using the timeline view, 
users can click on a pin in the timeline bar to view 
a selection of data. When the pins in the timeline 
view have been selected, the relevant points are 
highlighted in the Radviz view. Figure 1a shows 
six traffic features of a network for one week, 1–7 
April 2013. The selected time span option is one 
hour. Each timeline includes 140 time spans. Fig-
ure 1 highlights the time span from 9:00 a.m. to 
10:00 a.m. on 6 April in the timeline and Radviz 
views.

Radviz View
The timeline group provides the changing trends 
in the network traffic from a variety of metrics. 
However, it is difficult for users to quickly identify 
the time spans when the network has similar traf-
fic features over a long period. In our approach, 
the Radviz view is designed to extend the entropy-
based traffic analysis from the temporal space to 
the visual clustering space. In the visual clustering 
space, each data point corresponds to a time span, 
and the locations of data points with similar traf-
fic features will be close together. Thus, users can 
quickly recognize similar time spans.

Radviz is a radial visual clustering technique 
that maps data from a multidimensional space 
onto a planar picture.3 The data dimensions in 
Radviz are uniformly assigned positions on the 

circumference of a circle are called dimension an-
chors (DAs). The data records are mapped to the 
points within the circle. The position of each point 
in the circle is determined by the equilibrium of 
the attractions from the DAs. A significant feature 
of Radviz is its superior interactivity. The DAs on 
the circumference can be moved, inserted, or re-
ordered either manually or algorithmically to help 
users explore meaningful visual clustering results.

The time series of traffic features in the time-
line view are actually multidimensional data. Each 
time span is a record with multiple traffic features. 
In Figure 1b, NCon, NVol, and four entropy-based 
traffic features represent six DAs that are uni-
formly arranged on the circumference of a circle. 
Each dimension’s data value is normalized in the 
interval [0, 1] for comparison in a uniform space. 
Time spans with similar traffic features will get 
together in the Radviz through the six spring ten-
sions from the six DAs.

Rich interactions are provided for the free ex-
ploration of data, including the choice of a single 
record or multiple records, increasing or decreas-
ing the DAs on circles, reordering dimensions, and 
displaying detailed information about the records. 
When a record in Radviz view is selected, the rel-
evant time span in the timeline view will be high-
lighted. Detailed traffic distribution information 
on IPs and ports in this time span will also be 
updated in the matrix view. Figure 2 shows the 
different visual clustering effects on the 140 time 
spans in the week that result from changing the 
number of DAs or reordering the DAs in Radviz.

Matrix View
Entropy-based traffic features manifest the overall 
traffic distribution within a time span. However, 
users cannot easily locate the abnormal hosts and 
ports because of the lack of detailed distribution 
information of IPs and ports. The matrix view is 
designed to arrange all source/destination IPs/
ports in the same interface to express clearly the 

Figure 2. Visual clustering results when using Radviz. Users can freely explore the data by selecting single or 
multiple records, choices that change the number of DAs and reorder the DAs in Radviz.
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complete traffic distribution information of IPs 
and ports. Therefore, the entropy-based metrics 
combine in the matrix view range from an over-
view of the traffic distribution analysis to a more 
detailed analysis.

The matrix view consists of four submatrix dia-
grams (Figure 1c). The top two diagrams focus on 
source IPs and destination IPs, whereas the bottom 
two focus on source ports and destination ports. 
In the IP matrix view, arranging all IPv4 addresses 
in a limited matrix space is a challenge. In our 
method, we provide the customized service of an 
IP layout according to the network architecture. 
The IP matrix view in Figure 3 illustrates an en-
terprise network with three subnets. Thousands of 
dots representing hosts and servers are arranged 
in groups by the internal subnet, with the bigger 
dots representing the servers and the smaller dots 
representing the general hosts. The external and 
broadcast IP addresses that often appear are lo-
cated in the last part of the IP matrix view.

In the port matrix view, each port is represented 
as a grid. The ports are grouped on the basis of 
port number division. The first group allows us-
ers to select the ports that they mostly concerned 
about, such as port 80 for Web service. The second 
group comprises the well-known ports. The third 
group comprises registered ports that are occupied 
by some famous applications. The fourth group 
comprises dynamic ports. Unlike in the first three 
groups, every 100 continuous ports in the fourth 
group are placed in one grid cell.

The activity of a host or port is color coded from 
cool tones to warm tones to indicate its activity. 
Cool tones, such as navy and blue, indicate low 
network traffic, whereas warm tones, such as or-
ange and red, indicate high network traffic.

In the matrix view, users can visualize the de-
tailed traffic distributions of any time span that is 
highlighted in the timeline or Radviz views. Two 
types of traffic distribution, NCon and NVol, are 

provided. One of these distributions can be se-
lected for display in the matrix view. If an IP ad-
dress or a port is selected, detailed text messages 
will be shown in the state box in the control panel. 
Furthermore, the matrix view provides the traffic 
filter on the basis of the selected IP or port. 

Case Studies
Here, we illustrate how our visualization tool op-
erates using three cases: overall network analysis, 
DDoS attack detection, and port scan analysis. 

In our case studies, we use a Netflow dataset pro-
vided by an enterprise network (see www.vacom-
munity.org/VAST+Challenge+2013). A network flow 
is an abstraction of a sequence of packets between 
two terminals. A typical Netflow record is identi-
fied by timestamp, source IP address, destination 
IP address, source port, destination port, protocol 
type, amount of traffic, and so forth. The enter-
prise network consists of three different branches, 
with each branch possessing around 400 worksta-
tions and a group of servers. Approximately 45 
million Netflow records were collected between 
1–7 April 2013. The data preparation includes 
data clearance; aggregated calculations on each IP, 
each port, and the whole network for every 5 and 
60 minute interval; and the calculations of four 
entropy-based metrics.

Overall Analysis of the Week
In the first case, we analyzed the overall traffic 
patterns for the entire week. Therefore, the time 
span is set to 60 minutes. Figure 4a shows that 140 
points in Radviz can be divided into three clusters 
labeled A, B, and C. 

The points of cluster B in Radviz are near the 
DAs of EntroDIP and EntroDPort because the en-
tropy values of their destination IP/port are large 
and the other four traffic features are relatively 
small. In the timeline view, cluster B is mainly 
distributed in two consecutive periods, namely, 

(a) (b)

IPs in internal subnet 1

Group 1: User customized ports

Group 2: Well-known ports

Group 3: Registered ports
Source port matrix

Group 4: Uncommon ports

IPs in internal subnet 3

Other IPs

IPs in internal subnet 2
Source IP matrix

IPs in internal subnet 1

Group 1: User customized ports

Group 2: Well-known ports

Group 3: Registered ports
Source port matrix

Group 4: Uncommon ports

IPs in internal subnet 3

Other IPs

IPs in internal subnet 2
Source IP matrix

Figure 3. Ma-
trix view with 
subnets. The 
grouping and 
layout of (a) an 
IP matrix and 
(b) port matrix.
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from 17:00 on 1 April to 5:00 on 2 April and from 
16:00 on 6 April 6 to 5:00 on 7 April. Therefore, 
cluster B can be considered two subclusters, B1 
and B2. The main difference between these two 
subclusters is that the EntroDIP value of B1 is 
larger than that of B2. Therefore, the high pull 
tension from the DA of EntroDIP makes the B1 
points closer to the DA. We also select each time 
span from B1 (22:00 on 1 April) and B2 (18:00 on 
6 April) to observe the traffic volume distribution 
in the matrix view, (Figures 4c and 4d). The traffic 
volume is calm in the two time spans. Figure 4c 
shows a few source IPs with a similar probability 
of visiting many destination IPs. Figure 4d shows 
a large number of dynamic destination ports that 
have been visited.

Cluster A occupies most of the time spans in the 
timeline view. The common characteristic of clus-
ter A is that the values of EntroSIP and EntroSPort 
are large. This result indicates that a large number 
of source IPs/ports are involved in the network 
activities. Cluster A can also be divided into four 

subclusters according to the values of NCon and 
NVol. In the next case, we will analyze the abnor-
mal events in clusters A3 and A4.

DDoS Attack Analysis
DDoS is usually a destructive attack that consists 
of a surge in traffic volume. We will demonstrate 
the process of analyzing the patterns of a DDoS 
attack, locating the involved hosts and assessing 
the damage by using ENTVis.

Two time spans in cluster A4 are considered 
abnormal because the values of NCon and NVol 
suddenly became large and the values of Entro-
DIP and EntroDPort suddenly became small. This 
finding indicates that a large amount of traffic has 
been sent to a few destination hosts and ports. 
This type of anomaly belongs to the typical traf-
fic distribution features of a DDoS attack. The 
detailed NCon information in the matrix view 
can help us validate our speculation and locate 
the attackers and victims. The deepest red dot in 
the destination matrix is Web server 172.30.0.4, 

(a) (b)

(c) (d)

Figure 4. 
Overall analysis 
of traffic 
patterns in a 
week. (a) All 
time spans are 
divided into 
three clusters 
in Radviz. 
(b) Temporal 
distributions 
of the three 
clusters in the 
timeline view.  
(c) Detailed 
traffic 
information 
from 21:00 
to 22:00 on 
1 April 2013 
in the matrix 
view.  
(d) Detailed 
traffic 
information 
from 19:00 
to 20:00 on 
6 April 2013 
in the matrix 
view.
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which we select as the filtering option to update 
the other three matrixes. As Figure 5a shows, 
during the normal behavior, most of the hosts 
in the third subnet have visited 172.30.0.4 with 
low traffic, because 172.30.0.4 is a Web server 
in this subnet. The behavior became abnormal 
when some external IPs (in red) maliciously vis-
ited port 80 of 172.30.0.4 through more than 
60,000 source ports. Thus, we can determine 
that 172.30.0.4 suffered from a DDoS attack at 
noon on 3 April.

The time spans of cluster A3 follow closely 
after the DDoS attack. All traffic features are 
unexpectedly harmonious in the hours of cluster 
A3. Figure 5b shows a large amount of active 
source ports from 5:00 to 6:00 on 4 April. With 
the Web server 172.30.0.4 still selected as the 

filtering option, Figure 5c shows that it had no 
related traffic. Therefore, we can speculate that 
the Web server 172.30.0.4 was paralyzed after the 
DDoS attack.

Port Scan Analysis
In the third case study, we analyze the abnormal 
events in cluster C by zooming in on the time span, 
switching from 60 minute to 5 minute intervals.

Cluster C only includes two successive time 
spans, namely, from 10:00 to 12:00 on 6 April. In 
the Radviz view, these two points are isolated from 
the other points (Figure 4a). In the timeline view, 
their values of NCon and NVol are large, whereas 
the values of four entropy measures suddenly 
change. We zoom into these two hours with bins 
of five minutes to explore what happened.

(a)

(b) (c)

Figure 5. 
Analysis of a 
distributed 
denial of 
service (DDoS) 
attack. (a) The 
DDoS attack 
occurred at 
noon on 3 April 
2013.  
(b) The matrix 
view shows 
the traffic 
distributions 
after the DDoS 
attack. (c) The 
suspicious 
outage appears 
on server 
172.30.0.4.
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Figures 6a and 6b provide an overview of 
traffic patterns from 10:00 to 12:00 on 6 April. 
The time spans are clustered into three groups in 
yellow (C1), red (C2), and blue (C3). Importantly, 
the yellow and blue groups have opposite traffic 
features for the NCon, EntroSIP, EntroSPort, and 
EntroDPort values. For example, the values of 
EntroDPort on the yellow points are small, and the 
values of EntroDPort on the blue points are large. 
The switches from the yellow group to the blue 
group occurred several times within 30 minutes 
after 11:00. The only red time span in Figure 6a is 
a transitional time span between the yellow and 
blue groups.

We selected two time spans in the borders 
between the yellow and blue groups to explore the 
traffic features in the matrix view. Figures 6c and 
6d show the detailed traffic distributions in the 
time spans from 11:00 to 11:05 and from 11:15 to 
11:20. In the destination IP matrix view in Figure 
6c, some highly visited external destination IPs 
can be observed. There IPs are the corporation’s 
external Web servers. We selected one of these IPs 
(namely, 10.0.0.6) as the filter and found that many 
internal IPs used the scattered ports to visit port 80. 
At this moment, the traffic was peaceful and the 
network was healthy. Figure 6d shows an obvious 
abnormal event in the destination port matrix 

because almost all destination ports were visited 
at this moment. We selected the highest traffic 
source IP (namely, 10.10.11.15) with the deepest 
red color as the filter. Surprisingly, IP 10.10.11.15 
scanned all server ports in the third subnet. This 
abnormal behavior is clearly a malicious port scan 
that scans for any vulnerable port in the servers, 
thus explaining why the traffic features suddenly 
changed. This attack lasted throughout the whole 
blue time span.

Expert Review and Discussion
To evaluate our approach further, we had two 
potential users (network administrators in a 
university) perform an expert review. We designed 
a test and an interview for our expert review. The 
test included two parts. Part one implemented 
entropy-based anomaly detection without our 
prototype system, whereas part two involved 
working with our prototype system. The experts 
were given one hour for each part. During the 
interview, we talked about the user experience, and 
the advantages and limitations of the visualization 
framework. 

In part one of the test, expert A almost ignored 
the entropy-based traffic features and queried the 
top-N of traffic volume to look for clues. He could 
not easily accept entropy theory in such a short 

(a)

(c)

(b) (d)

Figure 6. Analysis of a port scan. (a) Time series from 10:00 to 12:00 on 4 April 2013 in 5 minute samples. (b) All time spans in 
these two hours are divided into three clusters in Radviz. (c) Normal traffic patterns from 11:00 to 11:05. (d) Malicious port scan 
at 11:15.

g6zha.indd   49 10/22/15   1:38 PM



50 November/December 2015

Human-Centered Data Visualization

time and preferred to use his accustomed method. 
Expert B tried to follow our direction by marking 
out many suspect time spans according to the 
entropy-based traffic features. Thereafter, he 
spent much of his time checking which moments 
were the real risks. In part two of the test, both 
experts became familiar with our tool quickly 
and identified many abnormal events by using 
the tool. The experts were also able to develop 
a comprehensive understanding of the overall 
network situation using the tool. 

Both experts believe that our interface could 
be a useful tool for quickly understanding and 
using entropy-based traffic features for anomaly 
detection. Expert A commented, “It will take much 
time for me to use entropy in practice without this 
tool.” Expert B added, “We really need tools like 
this to check the anomalies that are detected by 
automated alarming tools because the number of 
false positives emitted by them is truly staggering.”

Based on the fruitful comments we received 
from the experts, we identified four limita-

tions of our approach as well as potential meth-
ods to improve it. First, the IP layout method 
in IP-matrix can adapt to small-sized enterprise 
networks, but it cannot expand to show all IPs in a 
large-scale network. Second, our tool is supported 
by a large number of aggregated computations. 
Thus, we plan to optimize our data processing 
strategy to improve our response to large-scale 
data and real-time analysis. Third, if more traf-
fic features were added into our analysis cycle, 
the visual clutters in the timeline view would in-
crease, and the demand of providing the optimal 
placements of DAs would be urgent in the Radviz 
view. Lastly, the experts suggested that the high-
risk period that was detected by some automated 
methods should be marked in the timeline view to 
help users to initiate visual analysis quickly. They 
also suggested that we consider monitoring the dy-
namic assigned IPs for the temporary hosts.

This analytical method can be applied to many 
entropy-based domains of data analysis, such as 
understanding the human mobility features in 
urban computing and exploring the communication 
patterns of people on social media. 
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